Main Page | Namespace List | Class Hierarchy | Class List | File List | Class Members | File Members

Statistics Class Reference

#include <Statistics.h>

List of all members.

Public Member Functions

 Statistics ()
 ~Statistics ()

Static Public Member Functions

Double_t MAXIT ()
Double_t EPS ()
Double_t EPS1 ()
Double_t EPS2 ()
Double_t FPMIN ()
Double_t Max (Double_t val1, Double_t val2)
Double_t Max (vector< Double_t > vector)
Double_t Min (Double_t val1, Double_t val2)
Double_t Min (vector< Double_t > vector)
Double_t Mean (vector< Double_t > vector)
 Calculates the mean value of a vector.

Double_t Average (vector< Double_t > vector)
 Calculates the mean value of a vector.

Double_t Variance (vector< Double_t > vector)
 Calculates the what we usually call variance of a vector: biased-corrected variance.

Double_t BiasedVariance (vector< Double_t > vector)
 Calculates the variance of a vector.

Double_t UnbiasedVariance (vector< Double_t > vector)
 Calculates the unbiased variance of a vector.

Double_t Covariance (vector< Double_t > v1, vector< Double_t > v2)
Double_t StandardDeviation (vector< Double_t > vector)
 Calculates the what we usually call variance of a vector: biased-corrected variance.

Double_t BiasedStandardDeviation (vector< Double_t > vector)
Double_t UnbiasedStandardDeviation (vector< Double_t > vector)
Double_t RMS (vector< Double_t > vector)
map< string, Double_t > ChiSquareTest (vector< Double_t > v1, vector< Double_t > v2, int nbins)
map< string, Double_t > KSTest (vector< Double_t > v1, vector< Double_t > v2)
map< string, Double_t > BinnedKSTest (vector< Double_t > v1, vector< Double_t > v2, int nbins)
map< string, Double_t > BinnedKSTestRoot (vector< Double_t > v1, vector< Double_t > v2, int nbins)
vector< Double_t > SortBubble (vector< Double_t > vector)
vector< int > GetSortedIndex (vector< Double_t > vector)
Double_t CalculateKSProbability (Double_t alam)
Double_t Entropy (vector< Double_t > vector)
Double_t MutualEntropy (vector< Double_t > vector1, vector< Double_t > vector2)
 Calculates H(X|Y), where X=vector1 and Y=vector2.

map< string, Double_t > FTest (vector< Double_t > vector1, vector< Double_t > vector2)
map< string, Double_t > TTestForEqualVariances (vector< Double_t > vector1, vector< Double_t > vector2)
map< string, Double_t > TTestForUnequalVariances (vector< Double_t > vector1, vector< Double_t > vector2)
Double_t IncompleteBetaFunction (Double_t a, Double_t b, Double_t x)
Double_t IncompleteBetaFunctionContinuedFraction (Double_t a, Double_t b, Double_t x)
 Evaluates continued fraction for incomplete beta function by modified Lentz's method (Numerical Recipes in C, chapter 6.4).

Double_t IncompleteGammaFunctionQ (Double_t a, Double_t x)
 Returns the incomplete gamma function Q(a,x)=1-P(aa,x) (Numerical Recipes in C, chapter 6.2).

Double_t IncompleteGammaFunctionQContinuedFraction (Double_t a, Double_t x)
 Returns the incomplete gamma function Q(a,x) evaluated by its continued fraction representation (Numerical Recipes in C, chapter 6.2).

Double_t IncompleteGammaFunctionPSeries (Double_t a, Double_t x)
 Returns the incomplete gamma function P(a,x) evaluated by its series representation (Numerical Recipes in C, chapter 6.2).

Double_t LogOfGammaFunction (Double_t x)
 Returns the value of ln[Gamma(x)] for x>0 (Numerical Recipes in C, chapter 6.1).

Double_t Correlation (vector< Double_t > cv1, vector< Double_t > cv2)
 Calculates correlation coefficient between two vectors.

Double_t RandomPoisson (Double_t *x, Double_t *par)


Constructor & Destructor Documentation

Statistics::Statistics  ) 
 

Statistics::~Statistics  ) 
 


Member Function Documentation

Double_t Statistics::Average vector< Double_t >  vector  )  [static]
 

Calculates the mean value of a vector.

Double_t Statistics::BiasedStandardDeviation vector< Double_t >  vector  )  [static]
 

Double_t Statistics::BiasedVariance vector< Double_t >  vector  )  [static]
 

Calculates the variance of a vector.

map< string, Double_t > Statistics::BinnedKSTest vector< Double_t >  v1,
vector< Double_t >  v2,
int  nbins
[static]
 

map< string, Double_t > Statistics::BinnedKSTestRoot vector< Double_t >  v1,
vector< Double_t >  v2,
int  nbins
[static]
 

Double_t Statistics::CalculateKSProbability Double_t  alam  )  [static]
 

map< string, Double_t > Statistics::ChiSquareTest vector< Double_t >  v1,
vector< Double_t >  v2,
int  nbins
[static]
 

Double_t Statistics::Correlation vector< Double_t >  cv1,
vector< Double_t >  cv2
[static]
 

Calculates correlation coefficient between two vectors.

Double_t Statistics::Covariance vector< Double_t >  v1,
vector< Double_t >  v2
[static]
 

Double_t Statistics::Entropy vector< Double_t >  vector  )  [static]
 

Double_t Statistics::EPS  )  [inline, static]
 

Double_t Statistics::EPS1  )  [inline, static]
 

Double_t Statistics::EPS2  )  [inline, static]
 

Double_t Statistics::FPMIN  )  [inline, static]
 

map< string, Double_t > Statistics::FTest vector< Double_t >  vector1,
vector< Double_t >  vector2
[static]
 

vector< int > Statistics::GetSortedIndex vector< Double_t >  vec  )  [static]
 

Double_t Statistics::IncompleteBetaFunction Double_t  a,
Double_t  b,
Double_t  x
[static]
 

Double_t Statistics::IncompleteBetaFunctionContinuedFraction Double_t  a,
Double_t  b,
Double_t  x
[static]
 

Evaluates continued fraction for incomplete beta function by modified Lentz's method (Numerical Recipes in C, chapter 6.4).

Double_t Statistics::IncompleteGammaFunctionPSeries Double_t  a,
Double_t  x
[static]
 

Returns the incomplete gamma function P(a,x) evaluated by its series representation (Numerical Recipes in C, chapter 6.2).

Double_t Statistics::IncompleteGammaFunctionQ Double_t  a,
Double_t  x
[static]
 

Returns the incomplete gamma function Q(a,x)=1-P(aa,x) (Numerical Recipes in C, chapter 6.2).

Double_t Statistics::IncompleteGammaFunctionQContinuedFraction Double_t  a,
Double_t  x
[static]
 

Returns the incomplete gamma function Q(a,x) evaluated by its continued fraction representation (Numerical Recipes in C, chapter 6.2).

map< string, Double_t > Statistics::KSTest vector< Double_t >  v1,
vector< Double_t >  v2
[static]
 

Double_t Statistics::LogOfGammaFunction Double_t  x  )  [static]
 

Returns the value of ln[Gamma(x)] for x>0 (Numerical Recipes in C, chapter 6.1).

Double_t Statistics::Max vector< Double_t >  vector  )  [static]
 

Double_t Statistics::Max Double_t  val1,
Double_t  val2
[static]
 

Double_t Statistics::MAXIT  )  [inline, static]
 

Double_t Statistics::Mean vector< Double_t >  vector  )  [static]
 

Calculates the mean value of a vector.

Double_t Statistics::Min vector< Double_t >  vector  )  [static]
 

Double_t Statistics::Min Double_t  val1,
Double_t  val2
[static]
 

Double_t Statistics::MutualEntropy vector< Double_t >  vector1,
vector< Double_t >  vector2
[static]
 

Calculates H(X|Y), where X=vector1 and Y=vector2.

Double_t Statistics::RandomPoisson Double_t *  x,
Double_t *  par
[static]
 

Double_t Statistics::RMS vector< Double_t >  vector  )  [static]
 

vector< Double_t > Statistics::SortBubble vector< Double_t >  vec  )  [static]
 

Double_t Statistics::StandardDeviation vector< Double_t >  vector  )  [static]
 

Calculates the what we usually call variance of a vector: biased-corrected variance.

map< string, Double_t > Statistics::TTestForEqualVariances vector< Double_t >  vector1,
vector< Double_t >  vector2
[static]
 

map< string, Double_t > Statistics::TTestForUnequalVariances vector< Double_t >  vector1,
vector< Double_t >  vector2
[static]
 

Double_t Statistics::UnbiasedStandardDeviation vector< Double_t >  vector  )  [static]
 

Double_t Statistics::UnbiasedVariance vector< Double_t >  vector  )  [static]
 

Calculates the unbiased variance of a vector.

Double_t Statistics::Variance vector< Double_t >  vector  )  [static]
 

Calculates the what we usually call variance of a vector: biased-corrected variance.


The documentation for this class was generated from the following files:
Generated on Wed Feb 15 17:06:36 2006 for ROOTSNNS by doxygen 1.3.6